Table 2Summary of the Monte Carlo analysis providing an assessment of the robustness of the BPA-induced changes^a in sperm DNA methylation.

Frequency of occurrence	Dose (μg/kg/d)						
	2.5 ^b	25 ^b	250 ^b	2,500 ^b	25,000 ^b	250,000 ^b	Vehicles ^c
≥0	1925	2311	2574	2133	1939	173	1532
> 0.75	23	22	44	13	24	0	25
> 0.8	17	14	26	8	15	0	20
> 0.9	7	7	14	3	4	0	9
1	1	0	0	0	0	0	2

Values in the table represent the total number of unique DMRs that occur at a given frequency relative to number of iterative analyses (i.e. # of unique DMRs/# of iterations).

 $^{^{\}rm a}>$ 10% methylation difference relative to concurrent vehicle control and q-value < 0.05; litters used as the unit of replication.

^b Monte Carlo analysis performed with 100 iterations.

^c Monte Carlo analysis performed with 1000 iterations.